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An Introduction to Time-Series Modelling

“Forecasting is the art of saying what will happen, and then explaining why it
didn’t!” (Anonymous, quoted in Chatfield (1989, p-66)).

INTRODUCTION

The purpose of this article is to give the reader a brief introduction to the
Box~Jenkins approach to time-serics modelling. It is hoped that after rcading
this article the reader will be able to model his or her own time-series.

Unlike most econometric modelling, time-series analysis involves modeclling a
dependent variable solcly in terms of the past history of itself. The main use of
time-series modelling is to estimate future values of the series, or more preferably
confidence intervals for the future values. Section 1 will outline two of the most
basic concepts used in time-series analysis, namely the ideas of stationarity and
the autocorrelation function {acf). Section 2 will introduce some of the basic
models of the Box-Jenkins approach, and section 3 will summarize some of the
main features of Box-Jenkins modelling. For illustrative purposes section 3
contains an example of a time-series model which I have developed myself. The
time-series in question is The Economist’'s Metals Dollar Index for 1987, 1988
and 1989. Observations occur weekly, and for the purposes of determining the
predictive power of my model I have omitted the last 8 observations. Further
details of the index can be found in The Economist of 12 March 1988, 6 May 1989
and 6 January 1990.

1. BASIC CONCEPTS

The principle of stationarity is one of the most basic principles needed for
time-series modelling. A stationary time-series is one whose characteristics are
invariant with respect to time. More mathematically, the concept of stationarity is
defined as follows. For a stochastic process to be stationary the following
conditions must be satisfied for all values of t:

E(yt) =H,
Elly; - 2] = =(0),
E[(yt - P)(ka - ,’l)] = n(k)r k=lI2""'

where y, n(0), and n(k) are all constant. If any of these conditions are not
satisfied then the characteristics of the process will tend to change with time.
One can intuitively sce that a stationary time-series is much casier to estimate
and to forecast with, and Box-Jenkins modelling (which 1 shall introduce later)
relies crucially on the time-series being stationary.

Most economic time-series are not stationary. Many involve an upward
trend (prices, for example), so immediately the first condition required for
stationarity is broken (i.e. the average of the process is increasing with time).
Fortunately, however, there are methods which can sometimes be used to derive
a stationary process from a non-stationary one which I shall mention later,

The autocorrelation function {acf) is obtained by plotting
P(k) = n(k)/n{0)

against k, k=1,2,....., where n(k) is the autocovariance between ytand yi .k as
defined before, and n(0) is a scaling factor. In praclice, of course, we only have
estimates of the values of n(k) and consequently we only have an estimate of the
acf, usually called the correlogram or the sample autocorrelation Junction. If T is
the number of observations and p is the sample average then the correlogram is
denoted by

r(k) = c(k)/c(0), k=1,2,...
where ¢{0) = T'IZ(yt -2
and c(k) = T 13y~ wyei - Bl k=1,2,.....

As we shall sce later, the correlogram is one of the main lools used in trying

to identify time-series models.
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2. AR, MA, ARMA AND ARIMA PROCESSES

The processes most used in time-series modelling are autoregressive
integrated moving average (ARIMA) processes. I will look at autoregressive and
moving average processes separately, before combing them to get ARMA and
ARIMA processes.

An autoregressive process of order p is written as

Vi = B1Yi1 + eoeeee +Dp¥ip + €4

where the ei's are normally distributed random variables with mean zero

and constant variance. More concisely,

DLyt =eq,

where @(L) = 1 - @)L - @gL2 - ...... - B LP.
{L is known as the lag operator and is defined as

Lyt =yi.1.

so obviously IJyt = yt-j)- This is usually denoted AR[p).
For example,

Yt =9¥-1 + et
is an AR(1) process. Since
Yt = 9yi-1 + e{
=0 +0 '1e1+....+®et_1+et,
then Ely) = 9o
If 1@1<1 and if the process started a long time ago (i.e. t is large), then

Efyy = Elyt- l}_:= 0.

However, if |1@1>1, then E(yy) grows exponentially, so the process is non-
stationary. In fact if @ = 1, the process is also non-stationary, so y; is stationary
if and only {f 1@1<1. Statfonarity for higher order processes is harder to
envisage, but it can be shown that for an AR(p) process to be stationary the roots
of the polynomial equation

1-@L-@9L2 - ..... -G LP=0

must lie outside the unit circle. (This allows for complex roots). A proof of
this for p = 2 is outlined in Harvey (1981, pp. 29-32). Notice that for the AR(1)
process, P(k) decays geometrically as k gets large. The same is true for an AR(p)
process, but for small k, P(k) depends very much on the values of @1,..... ,Gp and
little can be said in gencral about the first few values of the acf.

In contrast to an autoregressive process, a moving average process relates y;
to previous values of the error term e;. More formally, an MA(q) process is
written as )

yt =151et_1 [ S +_ﬁqet_q + Ct,
or more concisely
Yyt = ﬁ(L)Ct,

where 8(L) = 1+ 8L + ... + B4L9. It is easy to see that a finite moving
average process is always stationary, since y; is uncorrelated with y; | for k>q.
Thus the autocorrclation function of an MA(q) process will suddenly drop to zero
for k>q.

Combining autoregressive and moving average processes we get processes of
the form

Yt =B yt-1 + -+ DpYtp tep +B1¢-1 + oo + Bget-q,
or @{L)y; = B(L)ey. pYep +a

These are called ARMA(p,q) processes. For the process to be stationary we
only require that the autoregressive part be stationary. In terms of the
autocorrelation function, the only thing that can be said in general is that for k>q
the acf is going to behave exactly as the acf of the autoregressive part of the
process, l.e. it decays geometrically towards O for k>q.

I hinted when talking about stationarity that some non-stationary processes
can be made stationary. Consider the following non-stationary process:

Yt=Yi-1+Cp -
Although the process is non-stationary, we see that if we let
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ZE =Yt - Y-l
. then z¢ = ¢y,
so z; (the differenced process) is stationary. Morc generally it is sometimes

possible to difference a non-stationary process d timcs to derive a stationary
process. Such a process is denoted ARIMA(p,d,q), an autoregressive integrated
moving average process. Such a process can be written as

2(L)ady; = B(Ley,

where Ayt =y - yi-1. Ad}’t = Ad_lYt - Ad-1)’1:-1-

MODEL BUILDING AND ESTIMATION

Suppose we want to fit an ARIMA(p,d,q) modcl to a data set ¥¢). Box &
Jenkins (1970) suggest a methodology for finding the best such ARIMA process.
They suggest first making a tentative guess as to the values of p. d and g, then
estimating the parameters, and finally subjecting the model to diagnostic tests to
sce if there is a significant divergence between the estimated model and the
actual data.

The first stage is to make a guess as to what the values of p, d and q might
be. The way that this is done is to examine the acf, or rather its approximation
the correlogram, the characteristics of which should give us some hints about
what values p, d and q might take on. The determination of d is probably the
ecaslest part. For an ARMA process to be stationary the correlogram should be
close to the zero for large k. If this isn't the case, the data should be differenced
as many times as necessary until we think the model is stationary. Consider the
Metals Dollar Index which I introduced earlier. Figure 1 shows the time-series
plot of the data. The data appcars to be non-stationary, and the correlogram
bears this out (see figure 2 - the correlogram is not dccaying towards zero). Thus
" differencing is required. Figurc 3 shows the correlogram of the differenced data.
Obviously differencing has produced a stationary modcl. Thus we can conclude
that d=1.
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03 To determince p and q is much harder.
0.2+ Box & Jenkins admit that this stage of their
0s] methodology is more like an art than a
e science. It is very hard to determine what p
§ 7 and q might bc cven from the acf, never
£ a1y mind the correlogram. Usually, though, we
P can narrow the possible models down to two
T o . or three ( especially if p and q are low, which
1erereT s unBIITINI will usually be the case), and then we can
‘ use diagnostic tests to determine which is

best. Pindyck & Rubinfeld (1976) show that
for c(k) to be significantly different from zero its absolute value must be greater
than 2/n1/2 (in the case of our cxample, approximatcly 0.164). One of the few
values of k that attains this value is k=4. Similarly, the partial autocorrclation
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function (which is similar to the acf, except the characteristics of the AR and the
MA parts of the process arc reversed) suggest that k=4 is important (although I
haven't provided a diagram). Thus I am going to suggest that the best model to
{it the data is either ARIMA(4,1,0), ARIMA(O,1,4) or ARIMA{4,1,4). Further
analysis may isolate one model.

Having tentatively suggested values for p.d and q the next stage is to
estimate the values of the parameters. It is usual to assume that the white noise
errors ¢ are independently and identically distribuled. Unfortunately, cstimation
of the parameters of an ARMA process involve non-linear maximum likelihood
techniques. 1 do not propose to discuss the dctails here, but the interested
reader is referred to Harvey (1981; pp.124-130) or to Pindyck & Rubinfeld (1976,
pp.481-489). From a practical point of view, howcver, most computer statistical
packages will carry out the estimation automatically, so the non-specialist reader
need not worry about the details. For my model, the following results were
produced:

For the ARIMA(4,1,0) model,

Efyy) = 0.0027y.1 + 0.1318y¢. o - 0.0652y,_3 - 0.2665y¢.4,
for the ARIMA(0, 1,4) model,
Elyy) = 0.0452¢(_| + 0.0679¢;_g - 0.0307¢_g - 0.2936¢¢_4,
and for the ARIMA(4, 1,4) model,
E(Yt) = -0.3722)’1.1 + 0-4017Yt-2 + 0.0269yt_3 - 0.202 IYt-4
+0.4272¢,_; - 0.2969¢_g - 0.0706¢;_3 - 0.1370y; 4.

Sometimes we can climinale a model at this stage if we discover that it is
non-stationary. Howevcr, all of the models above are stationary (a result which 1
won'l prove).

Since we have assumed that the residuals of the true process are white noise
{i.e. distributed normally and independently of cach other) then it scems logical
that we should use this assumplion to test the model. The best way to do this is
to usc the Box-Plerce test. Denote the correlogram of the residuals by ry

Le. ri = (Scie1)/Ced?)

where e; are the estimated residuals. If the model is correctly spccified, then
for large k the residual autocorrelations ry are themselves uncorrelated, normally
distributed random van'ab]cés with mean O and variance T. Thus the statistic

G =Tir

is approximaftcly chi-sliluared distributed with K-p-q degrees of frecdom, and
so by subjecting G to a chi-squared test we can dccide whether to accept the
model or not.

The compuler package which I used for my model (namely MINITAB)
produces Box-Picrce statistics for K=12, 24, 26, 48. Unfortunately this test failed
to eliminate any of the models (for example, for K=48, G=49.9 for the
ARIMA(4,1,0) modcel. The 95% confidence interval for a chi-squared distribution
with 44 degrees ol [reedom is approximately (29.4,53.3), which G easily falls
within), so to evaluate how well each of the models work, compare the predicted
future values with the actual values for each modcl from the table below. Onee
again, MINITAB produces forecasts of the future values, so there is no point
going into the theory behind the forecasting. -

Actual Valuc ARIMA(4,1.0) IMA{O, 1.4 ARIMA(4,1.4)
174.0 175.1 175.6 175.7
173.0 175.2 175.3 175.9
166.6 177.1 177.7 177.9
165.6 177.7 178.1 177.7
160.8 178.4 178.1 178.8
159.6 178.3 178.1 178.3
158.4 177.9 178.1 178.5

160.5 177.6 178.1 178.3
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As a crude measure of how cach model performed, the ARIMA(4, 1,0) model
was out by an average of 7.6% for the 8 observations, the ARIMA(0, 1,4) by 7.8%
and the ARIMA (4,1,4) by 7.9%. From these measures the ARIMA model is the
best, but there is very little to distinguish between the three of them. Although 1
haven’t included them, the actual values all fall withing the 95% confidence
intervals for all three models. Notice that the predictions for the first two
observations were quite good in each case, but not quite so good after that.

This approach hasn't isolated a single model for my time-series, but rather
has given us three potential oncs. Remember, time-series modelling is used
mainly for short-term forecasting, so having three potential models doesn't pose -
any real problems - we could just take an average of the three forecasts. The
model that [ have used isn't very susceptible to time-series modelling and was
used purely for illustrative purposes; something like ice-cream sales for the past
three years would be a lot more striking. Despite this my model has thrown up
some potentially useful forecasts, although I wouldn't advise any reader to use
them for arbitrage purposes!

CONCLUSION

The purpose of this article was to give the reader a flavour of the intricacies
of time-series modelling, Computer packages such as MINITAB or SPSSX take
much of the drudgery out of time-series analysis. The reader who is interested in
exploring the theory in more detail is referred to Pindyck & Rubinfeld (1976) for a
fairly readable introduction. More advanced material is to be found in Harve
(1981) and Chatfield (1989}, while the original work on the subject is found in
Box & Jenkins (1970).

Karl Murphy

Bibliography

Box, G.E.P. & Jenkins, G.M., Time Series Analysis: Forecasting and Control, 1970
(revised edition 1976).

Chatfield, C., The Analysis of Time Serles, 1989 (4th edition).

Harvey, A.C., Time Series Models, 1981,

Pindyck, R.S. & Rubinfeld, D.L., Econometric Models and Economic Forecasts,
1976.




