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An Introduction to Time-Series Modelling 

"Forecasting is the art of saying what will happen, and then explaining why it 
didn'U· (Anonymous, quoted in Chatfield (1989, p.66)). 

INTRODUC'TION 
The purpose of this article is to give the reader a brief introduction to the 

Box-Jenkins approach to time-series modelling. It is hoped that after reading 
this article the reader will be able to model his or her own time-series. 

Unlike most econometric modelling, time-series analysis involves modclling a 
dependent variable solely in terms of the past history of itself. The main use of 
time-series modelling is to estimate future values of the scries, or more preferably 
confidence intervals for the future values. Section 1 will outline two of the most 
basic concepts uscd in time-series analysis, namely the ideas of stationarity and 
the autocorrelation function (acO. Section 2 will introduce some of the basic 
models of the Box-Jenkins approach, and section 3 will summarize some of the 
main features of Box-Jcnkins modelling. For illustrative purposes scctlon 3 
contains an example of a time-series model which I have devcloped myself. The 
time-series in question is 111e Economist's Metals Dollar Index for 1987, 1988 
and 1989. Observations occur weekly, and for the purposes of determining the 
predictive power of my model I have omitted the last 8 obscrvations. Further 
details of the index can be found in The Economist of 12 March 1988, 6 May 1989 
and 6 January 1990. 

1. BASIC CONCEfYfS 
The principle of stationarity is one of the most basic principles needed for 

time-series modelling. A stationary ttme-series is one whose characteristics are 
invariant with respect to ttme. More mathematically, the conccpt of stationarity is 
defined as follows. For a stoehastie process to be stationary the follOWing 
conditions must be satisfied for all values of t: 

E(Yt] = )l, 
E[(Yt - )l]2] = 1t(0), 
E[(Yt - )l)(yt-k - )lll = 1t(k), k=1,2, .... 

where )l, 1t(0) , and 1t(k) are all constant. If any of these conditions are not 
satisfied then the characteristics of the process will tcnd to change with time. 
One can Intuitively sce that a stationary time-series Is much easier to estimate 
and to forecast with, and Box-Jcnkins modelling (which I shall Introduce later) 
relies cruCially on the time-series being stationary. 

Most economic time-series are not stationary. Many involve an upward 
trend (prices, for example), so inmlediately the first condition required for 
stationarity is broken (Le. the average of the process is increasing with time). 
Fortunately, however, there are mcthods which ean somctimes be used to derive 
a stationary proccss from a non-stationary one which I shall mention later. 

The autocorrelaiionfunction (ad) is obtained by plotting 
P(k) = rc(k)/1t(O) 

against k, k=1,2, ..... , where 1t(k) is the autocovariance between Yt and Yt-k as 
defined before, and 1t(0) Is a scaling factor. In practicc, of course, we only have 
estimates of the values of 1t(k) and consequently we only have an estimate of the 
acf, usually called the correlogram or the sample autocorrelationJunction. If T Is 
the number of observations and J.l is the sample avcrage then the correlogram Is 
denoted by 

r(k) = c(k)/c(O), k=1,2, ... 
where c(O] = T-l r(Yt - )l)2 
and c(k) = T-1r(Yt- J.I)(yt-k - J.I), k=1,2, ..... 

As we shall see later, the corrclogram is one of the main tools used In trying 
to Identify time-series models. 
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2. AA MA. ARMA AND ARIMA PROCESSES 
The processes most used in time-series modelling are autoregressive 

integrated moving average (ARIMA) processes. I will look at autoregrcssive and 
moving average processes separately. before combing them to get ARMA and 
ARIMA processes. 

An autoregressive process of order p is written as 
Yt = 01Yt-1 + ...... + 0pYt-p. + et· 

where the et·s are normally distriDutea random variables with mean zero 
and constant variance. More concisely. 

0(L)Yt = et. 
where 0(L) = I - 0lL - 02L2 - ...... - 0 pLP. 

(L is known as the lag operator and is defined as 
LYt =Yt-I' 

so obviously rJYt = Yt-l This is usually denoted AR[p). 
For example. 

Yt = 0Yt-1 + et 
is an AR(I) process. Since 

Yt = 0Yt-l + ef 
= 0tyQ + 0 -lel + .... + 0et_l + et. 

then E(Yt) = 0')'0 
If 101 <1 and if the process started a long time ago (i.e. tis large). then 

E(Yt) = E(yt-ll = O. 
However. if 10 I> 1. then t(y t) grows exponentially. so the process is non­

stationary. In fact if 0 = 1. the process is also non-stationary. so Yt is stationary 
if and only if 101 < 1. Stationarity for higher order processes is harder to 
envisage. but it can be shown that for an AR(p) process to be stationary the roots 
of the polynomial equation 

I - 01 L - 02L2 - ...... - 0 pLP = 0 
must lie outsidc the unit circle. (This allows for complex roots). A proof of 

this for p = 2 is outlincd in Harvey (1981. pp. 29-32). Notice that for the AR(l) 
process. P(k) decays geometrically as k gets large. The same is true for an AR(p) 
process. but for small k. P(k) depends very much on the values of01 ......• 0p and 
little can be said in general about the first few values of the acf. 

In contrast to an autorcgressive process. a moving average process relates Yt 
to previous values of the error term et. More formally. an MA(q) process is 
written as 

Yt =.J31e t-1 + ..... +.J3qet_q + et. 
or more concisely 

Yt =.J3(L)ct. 
where .J3(L) = 1 + .131 L + ..... + .J3qLq. It is easy to see that a finite moving 

average process is always stationary. since Yt is uncorrelated with Yt-k for loq. 
Thus the autocorrelation function of an MA(q) process will suddenly drop to zero 
for loq. . 

Combining autoregressive and moving average processes we get processes of 
the form 

Yt = 01Yt-1 + .... + 0pYt-p + et +.J31 Ct-l + .... +.J3qe t_q. 
or 0(L)Yt =.J3(L)et· 

These are called ARMA(p.q) processes. For the process to be stationary we 
only require that the autoregressive part be stationary. In terms of the 
autocorrelation function. the only thing that can bc said in general is that for loq 
the acf is going to behave exactly as the acf of the auto regressive part of the 
process. i.e. it decays gcomctrically towards 0 for loq. 

I hinted when talking about stationarity that some non-stationary processes 
can be made stationary. Consider the following non-stationary process: 

Yt =Yt-l + Ct· 
Although the process is non-stationary. we see that 1fwe let 

1 
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Zt=Yt-Yt-l 
thenzt = Ct' 

so Zt (the d!iJerenced process) is stationary. More generally it is sometimes 
possible to difference a non-stationary process d times to derive a stationary 
process. Such a process is denoted ARIMA(p,d,q), an autoregressive integrated 
moving average process. Such a process can be written as 

0(L)~dYt =]3(L)ct, 
where ~Yt = Yt - Yt-l' ~dYt = ~d-1Yt - ~d-1Yt_1· 

MODEL BUILDING AND ESTIMATION 
Suppose we want to fit an ARIMA(p,d,q) model to a data set {Yt}. Box & 

Jenkins (1970) suggest a methodology for fmding the best such ARIMA process. 
They suggest first making a tentative guess as to the values of p, d and q, then 
estimating the parameters, and finally subjecting the model to diagnostic tests to 
sce if there is a significant divergence between the estimated model and the 
actual data. 

The first stage is to make a gucss as to what the values of p, d and q might 
be. The way that this is done is to examine the act; or rather its approximation 
the correlogram, the characteristics of which should give us some hints about 
what values p, d and q might take on. The determination of d is probably the 
easiest part. For an ARMA process to be stationary the correlogram should be 
close to the zero for large.k. If lhis isn't the case, thc data should be differenced 
as many times as necessary until we think the model is stationary. Consider the 
Metals Dollar Index which I introduced earlier. Figure 1 shows the time-series 
plot of the data. The data appears to be non-stationary, and the corrc1ogram 
bears this out (see figure 2 - the correlogram is not decaying towards zero). Thus 
differenclng is reqUired. Figure 3 shows the correlogram of the differenced data. 
Obviously differcncing has produced a stationary model. Thus we can conclude 
that d=!. 
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To determine p and q Is mueh harder. 
Box & Jenkins admit that this stage of their 
methodology Is more like an art than a 
science. It is very hard to determine what p 
and q might be even from the aef, never 
mind the correlogram. Usually, though, we 
can narrow the possible models down to two 
or three ( especially if p and q are low, which 
will usually be lhe case), and then we can 
use diagnostic tests to determine which is 
best. Pindyck & Rubinfeld (1976) show that 

for c(k) to be significantly dlrli.Tent from zero its absolule value must be greater 
than 2/n 1/2 (in the case of our example, approxlmalely 0.164). One of lhe few 
values of k that allalns thb value is k=4. Similarly, lhe partial autocorrclatlon 
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function (which is similar to the acf, except the characteristics of the AR and the 
MA parts of the process arc reversed) suggest that k=4 is important (although I 
haven't provided a diagram). Thus I am going to suggest that the best model to 
fit the data is either ARlMA(4,I,O), ARlMA(O,I,4) or ARlMA(4,1,4). Further 
analysis may isolate one model. 

Having tentatively suggested values for p.d and q the next stage is to 
estimate the values of the parameters. It is usual to assume that the white noise 
errors e are independently and identically distributed. Unfortunately, estimation 
of the parameters of an AHMA process involve non-linear maximum likelihood 
techniques. I do not propose to discuss the details here, but the interested 
reader is referred to Harvey (1981, pp.124-130) or to Pindyek & Rubinfcld (1976, 
pp.481-489). From a practical point of view, however, most computer statistical 
packages will carry out the cstimation automatically, so the non-specialist reader 
need not worry about the details. For my model, the follOWing results were 
produced: 

For the ARIMA(4,I,O) model, 
E(yt) = 0.0027Yt_l + 0.1318Yt_2 - 0.0652Yt_3 - 0.2665Yt_4' 

for the ARlMA(O,l,4) model, 
E(Yt) = 0.0452et_l + 0.067get_2 - 0.0307et_3 - 0.2936et_4 , 

and for the ARlMA(4,I, 4) model, 
E(Yt) = -0.3722Yt_1 + 0.40 17Yt-2 + 0.0269Yt_3 - 0.2021Yt_4 

+ 0.4272et_l - 0.296get_2 - 0.0706et_3 - 0.137Oyt_4· 
Sometimcs we can eliminate a model at this stage if we discover that it is 

non-stationary. However, all of the models above arc stationary (a result which I 
won't prove). 

Since we have assumed that the residuals of the true process arc white noise 
(Le. distributed normally and independently of cach othcr) then it seems logical 
that we should use this assumption to test the model. The best way to do this is 
to usc the Box-Pierce test. Denote the correlogram of the residuals by Irk 

i.e. Tk = (2.etet_k)/(Iet2) 
where et arc the estimated residuals. If the model is correctly specified, then 

for large k the residual autocorrelations Tk are thcmselves uncorrelated, normally 
distributed random variables with mean 0 and variance T. Thus the statistic 

0= T2.rk2 
is approximately chi-squared distributed with K-p-q degrees of frcedom, and 

so by subjecting G to a chi-squared test we can decide whether to accept the 
model or not. 

The computer package which I used for my model (namely MINITAB) 
produces Box-Pierce statistics for K=12, 24, 26, 48. Unfortunately this test failed 
to eliminate any of the models (foT example, for K=48, 0=49.9 for the 
ARIMA(4,I,O) model. The 95% confidence interval for a chi-squared distribution 
with 44 dcgrees of freedom is approximately (29.4,53.3). which G easily falls 
within), so to evaluate how wcll each of the models work, compare the predicted 
future values with the actual values for each model from the table below. Once 
again, MINITAl3 produces forecasts of the future values, so there is no point 
going into the theory behind the forecasting.· 

Actual Value ARTMA(4,I,O] aBlMA{O, 1.4] ARIMA{4,I,4] 
174.0 175.1 175.6 175.7 
173.0 175.2 175.3 175.9 
166.6 177.1 177.7 177.9 
165.6 177.7 178.1 177.7 
160.8 178.4 178.1 178.8 
159.6 178.3 178.1 178.3 
158.4 177.9 178.1 178.5 
160.5 177.6 178.1 178.3 

/ 
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As a crude measure of how cach model perfonned, the ARIMA(4,1,O) model was out by an average of 7.6% for the 8 observations, the ARIMA(O,I,4) by 7.8% and the ARIMA (4,1,4) by 7.9%. From these measures the ARIMA model is the best, but there is very little to distinguish between the three of them. Although I haven't included them, the actual values all fall withing the 95% confidence intervals for all three models. Notice that the predictions for the first two observations were quite good in each case, but not quite so good after that. 
This approach hasn't isolated a single model for my time-series, but rather has given us three potential ones. Remember, time-series modelling is used mainly for short-term forecasting, so having three potential models doesn't pose any real problems - we could just take an average of the three forecasts. The model that I have used isn't very susceptible to time-series modelling and was used purely for illustrative purposes; something like ice-cream sales for the past three years would be a lot more striking. Despite this my model has thrown up some potentially useful forecasts, although I wouldn't advise any reader to use them for arbitrage purposesl 

CONCLUSION 
The purpose of this article WdS to give the reader a flavour of the intricacies of time-series modelling. Computer packages such as MINITAB or SPSSX take much of the drudgery out of time-series analysis. The reader who is interested in exploring the theory in more detai1is referred to Pindyck & Rubinfeld (1976) for a fairly readable introduction. More advanced material is to be found in Harvey (1981) and Chatfield (1989), while the original work on the subject is found in Box & Jenkins (1970). 

Kari Murphy 
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